Sensor Networks and Research Applications at Rural Electric Distribution Cooperatives

America's Electric Cooperatives

- Serve 42 million people in 47 states through 65 generation & transmission (G&T) co-ops and 840 distribution co-ops
- Own and maintain 42% of the nation's distribution lines
- Average 7.4 consumers per mile of distribution line

NRECA Research Team

- Objective: Develop and demonstrate new technical capabilities that directly address challenges faced by electric cooperative utilities.
- Funded by cooperative member dues, U.S. Department of Energy (OE, EERE, and ARPA-E), and U.S. Department of Defense (DARPA).
- Strategic focus areas:
 - Utility data analytics
 - Grid cybersecurity
- Research projects are usually collaborative partnerships with universities, national laboratories, utility vendors, and cooperative utilities.

Emerging Grid Requirements

- Enabling distributed & renewable generation
- Facilitating changing consumer demands (incl. vehicles)
- Mitigating aging infrastructure impacts
- Accommodating changing central generation mix (increasing natural gas generation)
- Managing rapidly evolving cybersecurity threats
- Increasing critical infrastructure resiliency

New Technologies for New Challenges

Sensors at Distribution Cooperatives

- AMI installed nearly everywhere*
- SCADA used by the majority of co-ops
- Communications support:
 - Existing deployments primarily use PLC (1-5 baud)
 - Wireless RF gaining more widespread use
 - Fiber deployments growing rapidly from demand for rural high-speed internet
- Falling DPMU costs suggest power quality monitoring opportunities.
- A lot more can be done with data from existing sensors!

Delivering Maximum Value From Sensor Data

Cooperative Energy Services (CES) reserves exclusive discretion to determine the content and definition of MultiSpeak®, a federally registered trademark of NRECA. Copyright © 2000-2017 CES.

Challenges:

- Backhaul and data storage.
- Security.
- G&T–D interfaces.
- System integration.
- Developing end-use applications:
 - Planning
 - Operations

Dated 01/10/2017

Planning Research – Open Modeling Framework

- Sensor data key input to planning models
- Software results put in to free and open source electric utility modeling software, Open Modeling Framework (OMF, https://www.omf.coop)
- Built by the co-ops and the US Department of Energy
- Offers models to determine:
 - Cost-benefit and engineering analysis models for multiple DERs (solar, energy storage, etc.)
 - Full distribution and transmission dynamic powerflow simulation
 - Supporting tools in Python for data import, conversion, simulation and visualization
- Users from 176 organizations (utilities, vendors, universities, national labs) as of June 2017.

Planning Application: Volt-VAR Optimization

Inputs:

- AMI or SCADA data (used to calibrate load models)
- CYMDIST or Windmil models (converted automatically to open format)
- Key results:
 - Quasi-static time series (QSTS) simulation run via GridLAB-D
 - VVO control scheme evaluated over multiple seasons
 - Control algorithm comparison to verify reasonable number of control actions of voltage regulators and capacitor banks
 - Peak demand and energy reductions converted to cost impacts
- More information:
 - https://www.cooperative.com/public/bts/ smartgrid/Documents/NRECA DOE Costs Bene fits of CVR.pdf

Planning Application: Solar Integration

- Inputs:
 - Load and circuit model as before
 - Utility location (used to automatically import historical weather data from NOAA)
- Key outputs:
 - Overvoltage detection for centralized versus distributed solar deployment options
 - Reverse powerflow prediction based on climate and demand
 - Changes to voltage regulation and protective device operation calculated
- More information:
 - Research report: https://goo.gl/41hwXp
 - Try the model:

https://www.omf.coop/newModel/solarEngineering/ EAC

Planning Application: Energy Storage Valuation

75 Years of Service NRECA

America's Electric Cooperatives

- Inputs:
 - Load, circuit, location data as before
- Key outputs:
 - Calculation of realistic storage dispatch (via forecasting algorithms on top of scikit-learn)
 - Impact of net load on cash flow for the utility based on arbitrage, peak demand reduction or asset capacity deferral approaches
 - Integrated in to full QSTS circuit simulation to calculate interaction with solar, electric vehicles and load control
- More information:
 - Try the storage capacity deferral model: <u>https://www.omf.coop/newModel/storageDeferral/EAC2</u>

Planning Application: Optimal Resilience Investment

- Inputs:
 - Load, circuit, location data as before
 - Extreme weather event spatial impacts (wind speeds, water levels, etc. examples provided)
- Key outputs:
 - Estimated damage to the distribution system calculated via an asset fragility model
 - Given a fixed budget, calculates an optimal set of hardening upgrades (undergrounding, backfeeding, etc.) based on damage models
 - Calculates new switching and control actions for hardened system
- More information:
 - Model overview: https://goo.gl/VauxGd

Operations Needs

- Meter reading efficiencies typically provide the cost savings needed to deploy new systems.
- "Long tail" of additional applications added over time.
- Integration costs largest barrier to additional applications.

Source: 2013 Co-op Technology Survey, NRECA Market Research Services

Operations Research: GridState

- A system for passively monitoring and analyzing a comprehensive range of data from and about utility electrical and control system operations
- Initial development funded by U.S. Department of Energy and DARPA for cybersecurity anomaly detection
- Objective is to provide utilities and other stakeholders total operational situational awareness
- Passively collects and organizes all communications traffic within utility industrial control system networks
- Distribution PMUs can provide more detailed and timely state awareness

Future Research: Unification of Grid Planning and Operations Software

Conclusions

- Sensor networks widely deployed at rural electric cooperatives.
- Data integrated in to multiple planning applications.
- As backhaul bandwidth increases, operational and control opportunities emerge.

Feedback?
David.Pinney@nreca.coop

